IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 41, NO. 8, AUGUST 1993

1251

Frequency and Time Domain Characterization
of Microstrip-Ridge Structures

Andrew G. Engel, Jr. and Linda P. B. Katehi, Senior Member, IEEE

Abstract— Microstrip-ridge structures, i.e., conducting strips
which are mounted on ridges and are in the close proxim-
ity of other conductors on othér ridges, are found in sub-
millimeter/terahertz monolithic circuits in conjunction with lay-
ered, ridged dielectric waveguides; in millimeter-wave monolithic
circuits as microslab lines; in microwave monolithic circuits
as integrated traveling-wave optical modulators; and in VLSI
circuits as interconnects. A hybrid full-wave frequency domain
technique which uniquely synthesizes well-known integral equa-
tion and mode-matching methods is shown to be applicable to
the study of microstrip-ridge structures. Unlike most other inte-
gral equation techniques, the integral equation~-mode matching
(AEMM) technique is capable of characterizing a wide variety
of nonplanar structures. Time domain results are obtained by
utilizing a Fourier transform and an equivalent circuit model to
evaluate the response at each frequency point. To introduce. this
method, several two-dimensional structures—specifically, coupled
microstrips on ridges, coupled microstrip with an etched groove,
and an electrooptic modulator—are examined.

I. INTRODUCTION

s monolithic circuits are designed to perform multiple

functions at heightened frequencies, increased complex-
ity is inevitable. One reason why monolithic circuits are
becoming more elaborate is the use of a class of nonplanar
interconnects, which may be described as “microstrip-ridge
structures.” These structures are microstrip in that they consist
of conducting strips suspended by a dielectric above a ground
plane, but the conducting strips are mounted on ridges and
in the close proximity of other conductors on other ridges.
For example, in the sub-millimeter and terahertz frequency
ranges, excessive ohmic losses preclude the use of microstrip
in monolithic circuits. Whether coplanar waveguide, dielec-
tric waveguide, or another type of guiding structure is used
in place of microstrip, sub-millimeter/terahertz monolithic
circuits apparently will still employ short lengths of microstrip-
ridge structures. A typical sub-millimeter/terahertz monolithic
circuit could utilize a low-loss layered, ridged dielectric wave-
guide as a transmission line [1]. A passive circuit element
such as an inductor could be created from the selective use of
conductors in conjunction with the waveguide. A transition to
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Fig. 1. Examples of microstrip-ridge structures include cross sections of
(a) a conducting strip on layered ridged dielectric waveguide, and (b) an
electrooptic modulator. :

an active device could consist of a conductor mounted on the
ridged waveguide (Fig. 1(a)). A millimeter wave monolithic
circuit might employ a microslab™ waveguide [2], [3], which
consists of a conducting strip on a ridge with a layered sub-
strate. Microwave signals are used to control the permittivity of
optical waveguides, as in an integrated traveling-wave optical

‘modulator. The modulator structure might have an etched

groove between two conductors (Fig. 1(b)) in order to improve
the modulator bandwidth. Microwave harmonics associated
with very narrow pulses are also carried by complicated
interconnects in VLSI applications. These interconnects, which
are designed with the intention of increasing packing density
without increasing crosstalk, might consist of noncoplanar
conductors fabricated in conjunction with dielectric ridges,
grooved substrates, and localized superstrates. The dispersion
of the microwave signals could have significant effects on
pulse propagation.

Over the past ten years, the characterization of microstrip
structures on and near dielectric ridges has been addressed
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several times. Quasi-static methods, such as an integral equa-
tion formulation [4] and the rectangular boundary division
method [5], [6], have considered an open microstrip on a
finite dielectric and shielded microstrip near a chip edge,
respectively. In addition, full-wave mode-matching techniques
have been applied to the analysis of microslab [2], [3],
transverse wave propagation on FET structures [7], and a
variety of quasi-planar structures involving conductors on
finite-width substrates [8]. The method of lines [9], [10] has
been employed to characterize electrooptic modulator struc-
tures, a microstrip on a ridged substrate, a microstrip near a
chip edge, microslab, and slow-wave MIS microstrip/coplanar
lines with inhomogeneously doped substrates. In addition,
finite element [11], finite difference [12], [13], transmission-
line matrix (TLM) [14], and boundary integral [15] techniques
may be applied to structures with conducting strips in the
presence of inhomogeneous dielectrics.

Although nonplanar strip-ridge structures have not been
typically characterized by the class of integral equation/method
of moments techniques which solve directly for the currents
on the conducting strips, nonplanar analysis based on these
techniques is possible. In this paper, a hybrid full-wave integral
equation—mode matching (IEMM) technique is described and
applied to the study of nonplanar strip-ridge structures in
both the frequency and time domains. The IEMM technique
analytically decouples a structure into two parts, namely, the
conducting strips and the supporting dielectrics. The integral
equation portion of the formulation solves the conductor
problem, and the mode matching portion solves the dielectric
problem.

As is demonstrated in other works (e.g., [16]), the strength
of the IEMM method lies in its ability to characterize a class
of three-dimensional structures in which the uniformity of the
dielectric support structure along the longitudinal direction is
preserved. When these structures are analyzed, the decoupling
of the dielectric problem from the conductor problem by
the IEMM method is exploited—the mode matching portion
of the technique is applied to a given dielectric support
structure independent of the placement of conducting strips,
and efficient and swift solution of the integral equation with
the method of moments is then possible for any configuration
of conductors on the dielectric support structure. The extension
to three dimensions is easily accomplished by changing the
dependence of the longitudinal coordinate from an exponential
function (i.e., a propagating wave) to-a sine or cosine function
(i.e., a standing wave). The IEMM method requires that only
the conducting strips be discretized, and this area is usually
a small portion of the structure which is characterized; in
contrast, many of the other techniques need to discretize the
entire volume of the structure or all of the interfaces between
dielectrics for 3D implementation.

The 2D IEMM technique was briefly described for a specific
class of structures in [17]. The objectives of this paper are
to give a more general description of the 2D method and
to present frequency and time domain studies of several 2D
structures—specifically, coupled microstrip on ridges, cou-
pled microstrip with an etched groove, and an electrooptic
modulator.
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Fig. 2. Geometry of the general structure.

II. THEORY

The IEMM technique is applied by modeling a structure as a
rectangularwaveguide with conducting strips supported by di-
electric layers which contain rectangular step-inhomogeneities
(Fig. 2). The waveguide is divided into adjacent sections
of layered parallel-plate waveguide. The Green’s function is
determined by replacing the conducting strips with a delta-
function excitation and employing mode matching to apply the
boundary conditions at the interfaces between the parallel-plate
waveguides. The boundary conditions on the conducting strips
are enforced by solving the electric field integral equation
with the method of moments. Useful quantities such as the
propagation constant, the characteristic impedance, and a
coupling coefficient may then be calculated, and a time domain
analysis technique may be employed to characterize pulse
propagation.

A. General Structure

The general structure contains rectangular step inhomo-
geneities and conductingstrips, as shown in Fig. 2. The struc-
ture is uniform in the z -direction. The outer walls are perfect
electric conductors. Along the y-axis, the structure is divided
into J sectionsaty = b, j=1,2,---,J—1. (For simplicity,
Fig. 2 is drawn with only three sections.) The width of the jth
section is d9) = b — pGG=1)_ The jth section is divided into
I layers along the z-axis at z = aU9,i = 1,2,---,] — 1.
The value of T varies depending on the section index 5. Each
layer is isotropic with permittivity ¢(*/) and permeability (%),
Dielectric losses are accounted for with complex values of
permittivity. The structure contains a total of M conducting
strips, and the y-dimensions of the strips are assumed to be
negligible. This paper only considers strips which are located
parallel to the z -axis.

B. Integral Equation and Green’s Function

The fields, currents, and propagation constants of the struc-
ture are determined by solving Pocklington’s integral equation
in the spatial domain. For a two-dimensional structure such as
the one under consideration, the integral equation reduces to

E={ Gg-Jds'
S/

M

where G is the dyadic electric field Green’s function asso-

ciated with the structure, J is the current in the conducting
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strips, and S’ represents the surfaces of the conducting strips.
The Green’s function is the electric field when the conducting
strips are replaced with a current line source at (z',y').

A convenient form of the Green’s function is derived
by considering eachsection of the structure as a section of
inhomogeneous parallel plate waveguide [1]. In each section,
the fields consist of infinite sums of TE, and TM, modes.
The fields away from the source obey the homogeneous
wave equation, and are determined using vector potentials
A = ay(z,y,2)% and F = fo(z,y,2)% via

— — — 1 —
F=—jud+ —VV. A+ vxTF o)
Jwep €

H:%VXZ+WF_;vai?
)

oo ©)

where a time convention of e/“* has been chosen.

Since the structure is rectangular, the x-, y-, and z-
dependencies of a, and f, are separable. Assuming the
z-dependence to be exp(—jk,z),a, and f, in each layer are
expressed as

£890(x,y, 2)
=S XP@) YO () exp(—jk.z) @)
1

a{?(z,y, 2)

— ZX(U)AI

where the superscripts ¢ and j indicate the layer and section
and the superscripts E and M refer to TE, and TM, modes,
respectively. The separation parameters associated with the
functions Xl(”),Yl(]) and exp(—jk,z) are kg(fl]), k;’l), and k,,
respectively. The separation parameters and the wavenum-
ber of each layer k09 = w4/l (i) are related by the
dispersion equation.

The boundary conditions at each layer interface and at the
conducting walls at £ = 0, a are used to generate transcen-
dental equations for the z-directed wavenumbers k'( 7 and
expressions for the unknown constants associated w1th the
z-dependence X l(” ) 118].

The y-dependencies of the fields consist of infinite sums
ofplane waves. For convenience in the application of the
boundary conditions, the y-dependence of the fields in the
section which contains the current source is separated into two
parts, which are designated the primary and secondary fields.
The primary fields exist only in the section which contains
the source, satisfy the boundary conditions at the source, and
consist of plane waves leaving the source in the +y -direction.
Expressions for the primary field y-dependence Yf.l(] )(y, y)

G5 amd Gy

Y(J)M

(y) exp(—jk.2)  (5)

and mode amplitudes and are explicitly deter-
mined by the boundary conditions at the source (y = ¥')
and are given in Appendix I. The secondary fields satisfy
the homogeneous wave equation in all regions and consist of
plane waves traveling in both directions with mode amplitudes
¢ and D). The secondary field mode amplitudes are
determined by enforcing the boundary conditions at each
section interface with mode matching (extending the work
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in [1] by applying [19]-[22]) and combining the resuliing
scattering matrix equations.

In order to relate the fields in all sections, reflection coeffi-
cient matrices are defined for waves at the interfaces between
sections. At the interface y = bU~1), in the jth section, when
y < ¥, and when section j does not contain the source (so that
the primary fields are zero), the reflection coefficient matrix
<0 relates the secondary field mode amplitudes by

c) = p<® pW) (©6)

where CU) and DU are vectors which contain the mode
amplitudes and have the general form given in (25), Appendix
II. Equation (6) and the definition of the interface scattering
matrix in Appendix II are combined to give

1'\<(j+1) - Séjz)
(-8

+5%
+ (L(j)*11"<(7)L(J)“1)—1)—1Sg) (7)
where

LU = diag{exp(+jk{) )} ®
and S,(,’L% are the elements of the interface scattering matrix.
Similarly, at the interface y = b(9), in the jth section, when
y > v, and when section § does not contain the source, the
reflection coefficient matrix T>() relates the secondary field

mode amplitudes by

D@ =1>0Wa® )

so that
>0 _S(J) + S(J)( Sﬁ)
+ (LOAT>GH) Lo+D-1-1)-160) (90

Since the ends of the waveguide at y = 0 and y = b are
perfectly conducting walls, T<(!) = I'>(/) = —J_ Repeated
use of (7) and (10) gives I'<() and T>U) for the section
which contains the source.

When the reflection coefficient equations are applied at
the boundaries of thesection which contains the source, the
primary fields must be taken into account. As shown in
Appendix II, once the primary fields have been included,
the secondary field mode amplitudes Cl(] ) and Dl(] ) in the
source section are known in terms of the primary field mode
amplitudes C’?gj ),

The electric field Green’s function is expressed as

G9) (z,y;2,1)

= [0 (2, 9)|TROUL (o' o) (1)

where RU) is a matrix which depends on whether 3’ < y or
y >, the index 7 is determined by which section contains
y', and Uy ) and UQ( 7 are vectors which contain the explicit
dependence of the Green’s function on (z,y) and (z/,y'),
respectively. Expressions for RY), U and U arc given in
Appendix II. The matrix RO contams 1nformation about the
dielectric support structure relative to section j. When three-
dimensional structures are evaluated, R() may be determined
for each section of a given dielectric support structure, and
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efficient and swift analysis is possible for any configuration of
conductors which are placed parallel to the z- or y-axis on the
dielectric support structure. No such advantage is present in
the two-dimensional case since the propagation constant 3 is
determined iteratively and R() must be recalculated for each
value of 3.

C. Method of Moments Solution

The method of moments is applied by expressing the
currents on the conductorsin terms of basis functions U, (z)
with unknown coefficients I,,,. Since all of the structures which
are characterized in the next section have conductors which
are narrow compared to guided wavelength, the current on
each conductor is assumed to have a negligible transverse
component and is modeled with a Maxwellian function [23].

The boundary conditions on the conducting strips are ap-
plied with Galerkin’s technique, and the resulting matrix
equation is

V1= [2]l1] 12

where [V] is the excitation vector, [I] is the vector of unknown
current coefficients, and [Z] is the M x M impedance matrix
with elements given by

2 1AWt /2 pTm+Won /2
Tt W, /2 Sy —Win /2
/ !
- GEa(ZY = Ymi 'Y = Ym)

U (@) U () d2’ d. (13)

The left-hand side of (12) is zero since E, vanishes on
the conducting strips, and the propagation constants for the
structure are determined from zeros of the determinant of
[Z] since (12) is a homogeneous system. In general, the
propagation constant v = jk, may be complex, and is
expressed in terms of the phase constant 3 and the attenuation
constant « as v = « + jB. Once the propagation constant is
known, the fields for a given mode can be calculated from the
integral equation.

D. Characteristic Impedance, Coupling Coefficient,
and Time Domain Analysis '

The characteristic impedance Z. of a given mode in a
structure is determined from a reciprocity-related characteristic
impedance definition [24], [25], which is chosen because
it converts the modal description of general, asymmetric
multiconductor lines into a form where the equivalent voltages
and currents are compatible with external device models.

. In the case where coupled lines are evaluated, the coupling
is quantified with the coupling coefficient k., given by [26], as

the square root of the ratio of the coupled power to the incident

power. The expression for k. is given in Appendix IIL

Pulse propagation in the time domain on the structures is
characterized by transforming the excitation to the frequency
domain, utilizing an equivalent circuit model [27] to evaluate
the response at each frequency point, and transforming back
to the time domain. The equivalent circuit model considers
the modes of a system of terminated transmission lines as
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Fig. 3. Comparison of characteristic impedance results from this work to

results from [6]. The center of the strip is aligned with b/2,w = 1.0 mm,
a = b = 27.6 mm, and frequency = 3 GHz.

Fig. 4. Geometry of two coupled microstrips on dielectric ridges: w = 0.1

mm, h = 0.1 mm,d = 0.05 mm, ¢ = 1.3 mm, b = 2.51 mm, and
e, = 12.85.
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Fig. 5. Phase constant 3 versus frequency at various spacings s for the
structure described in Fig. 4.

equivalent decoupled lines of unit characteristic impedance.
The spatial variation of the equivalent voltages and currents for
a given mode is described by the propagation constant, which
is calculated from the IEMM analysis, and by two coefficients,
which are calculated from the boundary conditions at the
terminations. The equivalent quantities are related to the
physical quantities through coupling matrices which depend
upon the modal coefficients of the physical currents and the
characteristic impedance of each mode. '

ITII. RESULTS

The software was developed on an HP/Apollo workstation,
and the calculationswere performed on HP/Apollo, HP 9000,
and IBM RS-6000 computers. In all cases presented here, the
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propagation constant values were well converged using 100
TE, and 100 TM,, modes in each section. The characteristic
impedance calculations required 140 TE,, and 140 TM,, modes
in each section. As with all hybrid techniques, the efficiency
of the IEMM method is highly dependent on the geometry
of the problem being solved. The CPU time required by
the integral equation portion of the code depends on the
conductor geometry, and the time required by the mode match-
ing depends on the dielectric geometry. Specifically, for the
propagation constant calculations, an HP 9000/720 workstation
needs 2 CPU min for each mode matching interface and
5 min to calculate the Green’s function matrix R() and
solve the integral equation. Propagation constants are typically
determined in fewer than ten iterations. These CPU times
reflect the current state of the code, and do not reflect any
fundamental limit on the efficiency of the method. Techniques
are available which could greatly reduce the computation
times.

A. Verification

The software has been extensively verified. Results for
simple microstrip and coupled microstrip were compared with
the multitudinous data available in the literature; excellent
agreement was obtained. The propagation constant as a func-
tion of frequency for a microstrip near a chip edge was
calculated using the IEMM method, and was shown to agree
well with results obtained from both the method of lines and
experiment [17]. Results for the characteristic impedance for
a similar structure on two substrates of differing permittivities
and heights are compared to results from the literature [6] in
Fig. 3, and agreement to within 2% is obtained.

B. Coupled Microstrips on Dielectric Ridges
i

The geometry of two coupled microstrips on dielectric
ridges is given in Fig. 4; the structure is characterized in
Figs. 5-8. The first plot illustrates the behavior of the even-
and odd-mode phase constants for different spacings over the
frequency range 85-105 GHz. The next three plots show the
phase constants. 3, characteristic impedances Z., and coupling
coefficient k. at 94 GHz as a function of spacing for strips on
ridges and coupled microstrip on a continuous substrate.

Typical of coupled lines, the even-mode phase constants
generally decrease andthe odd-mode phase constants generally
increase with increasing spacing (Figs. 5-6)—i.c., as the lines
become further apart, the even and odd modes decouple
and the phase constants tend toward the single-strip value.
However, in this case, for 100 ym < s < 150 ym, the odd-
mode phase constant decreases before it begins to increase.
At s = 100 um, the ridges are contiguous and the strips are
together on a single ridge; the range 100 ym < s < 150 pym
is a transition region between the case of two strips on
a single ridge and the case of two strips on two ridges.
The transition region is better understood by placing an
electric wall halfway between the two strips; the odd mode
may now be characterized by considering either the left or
right half of the structure [28].  The capacitance between
one of the strips and the electric wall through the dielectric
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Fig. 6. Phase constant 8 versus spacing s at 94 GHz for microstrip on
dielectric ridges (Fig. 4) and microstrip on continuous substrate (Fig. 4, with
the two ridgesreplaced by a single substrate which extends over the entire
width of the structure).
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Fig. 7. Characteristic impedance Z. versus spacing s at 94 GHz for
microstrip on dielectric ridges (Fig. 4) and microstrip on continuous substrate
(Fig. 4, with the tworidges replaced by a single substrate which extends over
the entire width of the structure).
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Fig. 8. Coupling coefficient k.versus spacing s at 94 GHz for microstrip
on dielectric ridges (Fig. 4), microstrip on narrower dielectric ridges (Fig. 4,
with d = 0), and microstrip on continuous substrate (Fig. 4, with the two
ridgesreplaced by a single substrate which extends over the entire width of
the structure).

ridge and the air gap between the two ridges is sharply
decreased when the air gap increases from zero width, and this
decrease is reflected by the decrease of the odd-mode phase
constant in the transition region. As the air gap increases, this
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Fig. 9. Geometry of two microstrips with a groove etched between them:
w = 0.1 mm, » = 0.1 mm,s = 0.075 mm, ¢ = 1.3 mm, b = 2.51 mm,
and €, = 12.85.

capacitance becomes less and less significant compared to the
other capacitances between the strip and ground, and the odd-
mode (3-s curve more closely resembles that of conventional
coupled microstrip.

The data demonstrate that as the spacing between strips
increases, the strips on the ridges decouple faster than the
strips on the continuous substrate. The 8—s and Z.—s curves
for the coupled microstrip on ridges converge to the respective
values for a single strip on a ridge faster than the §— s and
Z.—s curves for the strips on the continuous substrate converge
to the respective values for a single microstrip on a continuous
substrate. In addition, the coupling coefficient of the strips on
the ridges falls off more rapidly with spacing than does the
coupling coefficient of microstrip on a continuous substrate.
When increased packing density is desirable, structures of this
type may be used in place of conventional microstrip.

The coupling coefficient curves include data for the limiting
case of ridges with widths equal to the widths of the conduct-
ing strips. At s = 100 pm, the strips on the wider ridges are
on one ridge, and the coupling is the same as for microstrip
on a continuous substrate. As s increases, the coupling of the
strips on the wider ridges tends toward that of the strips on
the narrower ridges. The transition between the case of strips
on a contiguous substrate and strips on individual ridges over
the range 100m < s < 150 pm is again manifest.

C. Coupled Microstrips with an Etched Groove

A structure which is closely related to the microstrip on
ridges is thecoupled microstrip with an etched groove ( Fig. 9).
The effects of groove depth on the propagation and coupling
characteristics of the structure at 94 GHz are shown in Figs.
10-12.

The plots of the even- and odd-mode phase constants versus
groove depth (Fig.10) show that the phase constants decrease
rapidly with increasing groove depth at shallow groove depths,
with the odd-mode phase constant decreasing more rapidly.
As the groove depth becomes comparable to the substrate
height, the decreases of the phase constants become slower and
more alike. The odd-mode characteristic impedance also shows
rapid change at shallow groove depths. Significant effects on
the propagation occur when even a very shallow groove is
added; the coupling coefficient versus groove depth plot in
Fig. 12 shows that marked decoupling occurs over the range
Oupum < hy < 20pum.
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Fig. 11. Characteristic impedance Z, versus groove depth hy at 94 GHz for

coupled microstrip with etched groove (Fig. 9).
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Fig. 12. Coupling coefficient k. versus groove depth h; at 94 GHz for
coupled microstrip with etched groove (Fig. 9).

Fig. 11 shows that the even- and odd-mode characteristic
impedances are most dissimilar at very shallow and very
deep groove depths, suggesting that the coupling coefficient
has a minimum value at intermediate groove depths. Fig. 12
substantiates that k. has such a minimum, and shows that the
minimum occurs when the groove depth h; is between 50 and
60 pm.

Pulse propagation on the structure when h; = 0pm and
hi = 50pum is illustrated in Figs. 13-15, respectively. In
each case, the line lengths were 2.54 cm, and the lines were
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Voltage

- . .10 :
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Fig. 13. Propagation of a pulse on coupled microstrip with no etched groove.
The geometry is given in Fig. 9. Left—active line; right—sense line.
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Fig. 14. Propagation of a pulse on coupled microstrip with an etched groove
of depth h; = 50 um. The geometry is given in Fig. 9. Left—active line;
right—sense line.

excited at one end of one of the lines, i.e., the “near end”
of the “active line.” The pulse had a duration of 1.0 ns, rise
and fall times of 0.1 ns, an amplitude of 1.0 V, and a period
of 10.0 ns. Each end was terminated with 43.0 2, which is
the characteristic impedance of a single conducting strip on
the substrate shown in Fig. 9 with h; = 0 um. Independent
of groove depth, the pulse on the active line undergoes no
noticeable dispersion since no losses are included, since the
propagation constants are nearly constant at frequencies up to
the maximum significant frequency component necessary for
the construction of the pulse, and since the difference between
the even- and odd-mode phase velocities is small.

The effects of the groove are quantified by the response on
the “sense line” (i.e., the line without the source). Associated
with the rise and fall of the pulse on the active line, relatively
short, low-amplitude pulses are present at the near end of the
sense line. Examination of these pulses shows that the presence
of the groove lessens the crosstalk between the two lines at the
near end. The amplitude of the near-end sense-line pulses in
the ungrooved case is greater than the amplitude of the near-
end sense-line pulses in the grooved case by a factor which is
approximately equal to the ratio of the coupling coefficients
when h; = 0.0 um and hy = 50.0 pm. At the far end of the
sense line, the dispersion due to the difference in even- and
odd-mode phase velocities [29] causes the amplitude of the
pulses to be larger in the grooved case.

The data demonstrate that the addition of the groove de-
creases crosstalk over short line lengths. The line length
at which the groove ceases to improve the crosstalk may
be determined from Fig. 15, which shows the time domain
response at various points along the sense line. At line lengths
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Fig. 15. Propagation of a pulse on the sense line of coupled microstrip with
no etched groove (top) and with an etched groove of depth 21 = 30 um
(bottom). The geometry is given inFig. 9.

Fig. 16. Geomeiry of modulator structure. @ = b = 1.0 mm.

of 0 and 0.635 cm, the maximum amplitude of the pulse
in the grooved case is less than the maximum amplitude of
the pulse in the ungrooved case; the converse is true at line
lengths of 1.905 and 2.540 cm. At a line length of 1.270 cm,
the maximum amplitude of the grooved case is only slightly
greater than in the ungrooved case. The line length at which
the groove begins to degrade performance is 1.25 cm.

D, Electrooptic Modulator Structures

The IEMM analysis technique may also be applied to elec-
trooptic modulatorstructures. An integrated modulator struc-
ture (Fig. 16) typically consists of an intrinsic GaAs guiding
layer for the optical signal and p— and n-Alg 025Gag 975As
layers for top and bottom cladding. The modulator is fabricated
on a 250 um n T—-GaAs substrate; for simplicity, the substrate
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Fig. 17. Propagation constant v = « + j3 versus frequency for modulator
structure of Fig. 16 at groove width s = 8.0pum and groove depths
h = 0.0pm and A = 6.0 pm.

has been assumed to be a perfect conductor in this case. The
optical signal is modulated by a microwave signal, which is
guided by the two conducting strips. The bandwidth depends
inversely on the difference between the optical and microwave
indexes of refraction [30]. The microwave index of refraction
(i.e., 8/ko) is considerably larger than the optical index of
refraction (= 3.41 for intrinsic GaAs at A = 1.3 pm [31]) due
to the losses in the cladding layers. A groove is etched between
the two electrodes in order to improve the bandwidth by
decreasing the microwave index of refraction and to minimize
the attenuation in the microwave signal.

The microwave phase and attenuation constants are plotted
over the frequency range 1-40 GHz for two different groove
depths in Fig. 17. As the frequency increases to 13 GHz,
the phase constants (3/kg decrease; at frequencies above 13
GHz, the phase constants are approximately constant at values
between 4.0 and 6.0. The attenuation constants increase with
frequency. The microwave frequency at which the difference
between microwave and optical indexes of refraction is min-
imized, and at which microwave attenuation is minimized, is
therefore approximately 13.0 GHz.

The behavior of the propagation constants as the groove
width and height vary at 18 GHz is presented in Figs. 18-19.
As the groove width s increases, the even and odd modes
decouple as the phase constants converge; the attenuation is
only slightly affected. As the groove depth 4 increases, the
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Fig. 18. Propagation constant v = « 4 jf versus groove width s for
modulatorstructure of Fig. 16 at frequency = 18 GHz and groove depth
h = 6.0 pm.

odd-mode attenuation decreases until the groove begins to pen-
etrate the lossless layer, at which point the attenuation becomes
approximately constant. This characteristic is consistent with
the attenuation constant data over frequency, which show that
the odd-mode attenuation constant when no groove is present
(h = 0.0 pm) is considerably higher than the other attenuation
constants. The odd mode evidently has a large fraction of its
power contained in the area between the conductors in the
lossy cladding layer.

IV. CONCLUSION

An integral equation-mode matching method useful in the
study of microstrip-ridge strutures has been presented, and
the method was applied to the characterization of several
nonplanar two-dimensional structures, namely, coupled mi-
crostrip on dielectric ridges, coupled microstrip with an etched
groove, and an integrated electrooptic modulator. The IEMM
technique is also applicable to structures with noncoplanar
conductors, and like most other integral equation techniques,
the IEMM technique is easily extended to the analysis of
three-dimensional structures. Future studies could consider
techniques to improve the efficiency of the method and mod-
ifications to the method which account for conductor losses,
complex coplanar waveguide structures, and anisotropic ma-
terials.
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APPENDIX I

PRIMARY FIELD MODE AMPLITUDES
The y-dependencies of the primary fields are
s()E
VRO (u,y)

+COp D" exp (kP (y — ) Sy
<( > .
Y;’(J)M(yég% (M
=Cp"" exp (ik,)™ (v — o))
Pl yl (14)

The currents on the conducting strips are assumed to have
only longitudinal (i.e., 2) components. Enforcing the boundary
conditions at the source (y = y’) gives expressions for the
primary field mode amplitudes:

E E
C;[(J) C>(J)
. GHE; 1
__JeXy &) 5)
26 (k09)? — (k7)) IE (1)
M M
o5 :C><a>
<(J)E rEM
k(J)M Z:CP/ IEM(1 ] (16)
where
ey =Lt [ .

IM(I/) 0 jwe(ZJ)e(l])u(ij)u(ij)
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dX(U)
dx

e 1
ErpN _
mo = /0 (@) el@i+D) 1,G7)
(XS (2))? da

@ 1
My
=) = /0 €9) 1(i9) 1y g +1)

(XM (0))? da.

X(”)M (z) dz W)

(18)

(19)
APPENDIX I

EXPLICIT EXPRESSION FOR THE GREEN’S FUNCTION

Before presenting the explicit expression for the Green'’s
function, they-dependencies of the secondary fields are given,
the interface scattering matrix is defined, and the secondary
field mode amplitudes in the section which contains the source
are determined. o

The y-dependencies of the secondary fields are shown in
(20) and (21) at the bottom of the next page.

The scattering matrices are defined by the equations

[L(J)D(J’)
cl+1) ]
. L@O-10G)
=[5V [D(j+1) +AGHD (B — y')C;(f+1)]
b < of (22)
LU+H oU+D)
[ D ]

, LGH+)—1 DG+
= [5] [Cu) +AO(y = b(n)(;;(f)}
b(J) > y/
where C’(J),D(J),C(j“’l),D(j“),C,,<<j+1), and C;(’) are

vectors which contain the mode amplitudes, L(H)*! is given
in (8) and

(23)

AY)(d) = diag{exp (jk$)d)}. (24)
The general form of the mode amplitude vectors is
cW =[cDM M .. .cOM ... cDE

, C(J)E O C(j)E .. _]T‘ (25)

The primary fields are included in the boundary conditions
via the vectors C'p (Appendix I); recall that C’(J = 0 unless

section j contains the source.
If section j is now assumed to contain the source, then

section j is divided into two regions at y = y/, and C, <G
and D are the mode amplitudes for y < ¢ and C; >()

and Dl>(j ) are the mode amplitudes for y > y’. The reflec-
tion coefficient matrix definitions ((6) and (9)) with nonzero
primary fields are

o<

=T<U)(D<W) £ ADRU-D —y
D>

=T (C>0) 4 AWy - b(j))cf;(j))

Nos?)  (@s)

(27)
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and C>) and D<U) are

c>W =(1 - L(J')—1I‘<(J)L(J’)—lp>(1))—1
. [@)-1p<@)
(LTI AG) (f — b(j))C;(j)
+ A(j)(b(J—l) _ y’)C;(j))

=R-OND(y — oz @ 4 RZW

S AG (=D y/)C;(j)

D<W =(1 - LO-Ip>0) p)-1p<i)—1

(28)

. L[@O-1p>0)
(LWOTID<@AG) (pG-Y) y’)C’;(])
+ AWy — b(]))C;(j))

= REVAD B0 — oW

+ RyDAD(y — 40)0z?. 29
The secondary field mode amplitudes are determined from (28)
and (27) if the Green’s function is required for y < y/, or
from (29) and (26) if the Green’s function is required for
y > y'. Typically, the conductors are at section interfaces, so
that either 3/ = b or 3 = bl—1 . Inspection of the above
equations indicates that numerical problems are minimized
when the Green’s function for y < 4’ is used in the case
when 1/ = b0~1) and the Green’s function for y > ¢/ is used
in the case when y' = b(9),

As shown in (11), the Green’s function is determined by the
vectors Ul(’)(x,y) and Ufg]) (z',%') and by the matrix R().
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The vector Ul(j)(:c,y) is

U (2,9)
A (@50 (y)
A (d20) (y))
AD(dEG) (y)
AW (dZD(y))

UG ()
U(J)(x)

ysy (30)

where the Ith element of the vector U()(z) is

k,  dx{OM
N we(”)u(i]‘) dz
if [ denotes a TM,, mode
Iy XI(U) (z)
if [ denotes a TE, mode

U (z) = (31)

6(”)

and d<U)(y) = b0~V — gy and d>U)(y) = y — b9, The
vector U (z', /) is

U ()

A(j)(d§(j)(y)) C;(])(x’)

B AW (d=@) (y)) C’;(j)(x') )

L AO (@S0 (y) C;g) () ysy. (32
A(J')(di(j)(y)) O](DJ)(‘T/)

Finally, the matrix R() is shown in (33) at the bottom of the
page.

(0P exp (=)™ (y — 0~1)) } o
YOE () = (;)rED§])E exp ((]j)lgffz)E(y ~ b)) ooy
! -G Xp (_]kyl (y— b(]))) } ’
| DD e (G b0y [ YT
(20)
(G e (—jhM (y — b)) } By
Y (y) = g 0 e 8‘)@?“@ o Y
—C7" exp (—jkyy " (y — b)) ,
[ DM exp (M (y — b)) } v
(1)
I+ RO 0 0 0
0 RV 0 0
RO = 0 0 O+ REY) 0 ysy (33)
0 0 0 rsOR5®
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APPENDIX III

COUPLING COEFFICIENT

The coupling coefficient k. is given by

where

kc = %(Fe - 1—‘o) (34)
— -1
(Zee - Z in Bl
2¢08 Bel + J(Zee + Z,.. ) sin Bel
- -1
] Zco -Z i o
Py = e = Zen ) sin il (36)
2 ¢co8 Bl + §(Zeo + Z ., ) sin SB,l
Zoo = Lot 37
=g (7
N2 ZCO
Lo =
e (39)

Zo =V ZceZco

(39)

where Z.. and Z,, are the characteristic impedances; 3. and
0B, are the phase constants for the even and odd modes,
respectively; and the length [ of the coupler is taken to be one-
quarter of the average of the even- and odd-mode wavelengths.
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