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Frequency and Time Domain Characterization

of Microstrip-Ridge Structures
Andrew G. Engel, Jr. and Linda P. B. Katehi, Senior Member, ZEEE

Abstract— Microstrip-ridge structures, i.e., conducting strips

which are mounted on ridges and are in the close proxim-
ity of other conductors on othiw ridges, are found in sub-

millimeter/terahertz monolithic circuits in conjunction with lay-

ered, ridged dielectric waveguides; in millimeter-wave monolithic
circuits as microslab lines; in microwave monolithic circuits
as integrated traveling-wave optical modulators; and in VLSI
circuits as interconnects. A hybrid full-wave frequency domain
technique which uniquely synthesizes well-known integral equa-

tion and mode-matching methods is shown to be applicable to
the study of microstrip-ridge structures. Unlike most other inte-
gral equation techniques, the integral equation-mode matching

(IEMM) technique is capable of characterizing a wide variety
of rzonplanar structures. Time domain resrdts are obtained by

utilizing a Fourier transform and an equivalent circuit model to
evaluate the response at each frequency point. To introduce thk

method, several two-dimensionai structures-specifically, coupled
microstrips on ridges, coupled microstrip with an etched groove,
and an electrooptic modulator—are examined.

I. INTRODUCTION

A
smonolithic circuits are designed to perform multiple

functions at heightened frequencies, increased complex-

ity is inevitable. One reason why monolithic circuits are

becoming more elaborate is the use of a class of nonplanar

interconnects, which may be described as “microstrip-ridge

structures.” These structures are microstrip in that they consist

of conducting strips suspended by a dielectric above a ground

plane, but the conducting strips are mounted on ridges and

in the close proxim~ty of other conductors on other ridges.

For example, in the sub-millimeter and terahertz frequency

ranges, excessive ohmic losses preclude the use of microstrip

in monolithic circuits. Whether coplanar waveguide, dielec-

tric waveguide, or another type of guiding structure is used

in place of microstrip, sub-millimeter/terahertz monolithic

circuits apparently will still employ short lengths of microstrip-

ridge structures. A typical sub-millimeter/terahertz monolithic

circuit could utilize a low-loss layered, ridged dielectric wave-

guide as a transmission line [1]. A passive circuit element

such as an inductor could be created from the selective use of

conductors in conjunction with the waveguide. A transition to
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(a)

Fig. 1. Examples of microstrip-ridge structures include cross
(a) a conducting strip on layered ridged dielectric waveguide,

electrooptic modulator.

sections of
and (b) an

an active device could consist of a conductor mounted on the

ridged waveguide (Fig. l(a)). A millimeter wave monolithic

circuit might employ a microslabTM waveguide [2], [3], which

consists of a conducting strip on a ridge with a layered sub-

strate. Microwave signals are used to control the permittivity of

optical waveguides, as in an integrated traveling-wave optical

modulator. The modulator structure might have an etclhed

groove between two conductors (Fig. l(b)) in order to improve

the modulator bandwidth. Microwave harmonics associated

with very narrow pulses are also carried by complicated

interconnects in VLSI applications. These interconnects, which

are designed with the intention of increasing packing density

without increasing crosstalk, might consist of noncoplanar

conductors fabricated in conjunction with dielectric ridges,
grooved substrates, and localized superstrates. The dispersion

of the microwave signals could have significant effects on

pulse propagation.

Over the past ten years, the characterization of microstrip

structures on and near dielectric ridges has been addressed
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several times. Quasi-static methods, such as an integral equa-

tion formulation [4] and the rectangular boundary division

method [5], [6], have considered an open microstrip on a

finite dielectric and shielded microstrip near a chip edge,

respectively. In addition, full-wave mode-matching techniques

have been applied to the analysis of microslab [2], [3],

transverse wave propagation on FET structures [7], and a

variety of quasi-planar structures involving conductors on

finite-width substrates [8]. The method of lines [9], [10] has

been employed to characterize electrooptic modulator struc-

tures, a microstrip on a ridged substrate, a microstrip near a

chip edge, microslab, and slow-wave MIS microstrip/coplanar

lines with inhomogeneously doped substrates. In addition,

finite element [11], finite difference [12], [13], transmission-

line matrix (TLM) [14], and boundary integral [15] techniques

may be applied to structures with conducting strips in the

presence of inhomogeneous dielectrics.

Although nonplanar strip-ridge structures have not been

typically characterized by the class of integral equationlmethod

of moments techniques which solve directiy for the currents

on the conducting strips, nonplanar analysis based on these

techniques is possible. In this paper, a hybrid full-wave integral

equation–mode matching (IEMM) technique is described and

applied to the study of nonplanar strip-ridge structures in

both the frequency and time domains. The IEMM technique

analytically decouples a structure into two parts, namely, the

conducting strips and the supporting dielectrics. The integral

equation portion of the formulation solves the conductor

problem, and the mode matching portion solves the dielectric

problem.

As is demonstrated in other works (e.g., [16]), the strength

of the IEMM method lies in its ability to characterize a class

of three-dimensional structures in which the uniformity of the

dielectric support structure along the longitudinal direction is

preserved. When these structures are analyzed, the decoupling

of the dielectric problem from the conductor problem by

the IEMM method is exploited—the mode matching portion

of the technique is applied to a given dielectric support

structure independent of the placement of conducting strips,

and efficient and swift solution of the integral equation with

the method of moments is then possible for any configuration

of conductors on the dielectric support structure. The extension

to three dimensions is easily accomplished by changing the

dependence of the longitudinal coordinate from an exponential

function (i.e., a propagating wave) to a sine or cosine function

(i.e., a standing wave). The IEMM method requires that only

the conducting strips be discretized, and this area is usually

a small portion of the structure which is characterized; in

contrast, many of the other techniques need to discretize the

entire volume of the structure or all of the interfaces between

dielectrics for 3D implementation.

The 2D IEMM technique was briefly described for a specific

class of structures in [17]. The objectives of this paper are

to give a more general description of the 2D method and

to present frequency and time domain studies of several 2D

structures—specifically, coupled microstrip on ridges, cou-

pled microstrip with an etched groove, and an electrooptic

modulator.

+iEiii3G9

J(11) ~(zl) :(1.1,1)

Fig. 2. Geometry of the general structure.

II. THEORY

The IEMM technique is applied by modeling a structure as a

rectangularwaveguide with conducting strips supported by di-

electric layers which contain rectangular step-inhomogeneities

(Fig. 2). The waveguide is divided into adjacent sections

of layered parallel-plate waveguide. The Green’s function is

determined by replacing the conducting strips with a delta-

function excitation and employing mode matching to apply the

boundary conditions at the interfaces between the parallel-plate

waveguides. The boundary conditions ‘on the conducting strips

are enforced by solving the electric field integral equation

with the method of moments. Useful quantities such as the

propagation constant, the characteristic impedance, and a

coupling coefficient may then be calculated, and a time domain

analysis technique may be employed to characterize pulse

propagation.

A. General Structure

The general structure contains rectangular step inhomo-

geneities and conductingstrips, as shown in Fig. 2. The strnc-

ture is uniform in the z -direction. The outer walls are perfect

electric conductors. Along the y-axis, the structure is divided

into .J sections at y = lJ(j), ~ = 1,2, . . . . J– 1. (For simplicity,

Fig. 2 is drawn with only three sections.) The width of the jth

section is d(~) = I@ — b(~– 1). The jth section is divided into

1 layers along the z-axis at z = ati~), i = 1,2,. ..,1 – 1.

The value of I varies depending on the section index j. Each

layer is isotropic with permittivity e(i~) and permeability p(i~).

Dielectric losses are accounted for with complex values of

permittivity. The structure contains a total of M conducting

strips, and the y-dimensions of the strips are assumed to be

negligible. This paper only considers strips which are located

parallel to the z -axis.

B. Integral Equation and Green’s Function

The fields, currents, and propagation constants of the struc-

ture are determined by solving Pocklington’s integral equation

in the spatial domain. For a two-dimensional structure such as

the one under consideration, the integral equation reduces to

(1)
Js!

.
where GE is the dyadic electric field Green’s function asso-

ciated with the structure, ~ is the current in the conducting
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strips, and S’ represents the surfaces of the conducting strips.

The Green’s function is the electric field when the conducting

strips are replaced with a current line source at (z’, y’).

A convenient form of the Green’s function is derived

by considering eachsection of the structure as a section of

inhomogeneous parallel plate waveguide [1]. In each section,

the fields consist of infinite sums of TEC and TM. modes.

The fields away from the source obey the homogeneous

wave equation, and are determined using vector potentials

~ = am(z, y, .z)2 and ~ = ~z(z, y, z)2 via

E=.juz+- 1 VV. Z+; VXF
]W.ep

(2)

F=:vxz+jwT–
1

—Vv .T (3)
jwcp

where a time convention of e~Wt has been chosen.

Since the structure is rectangular, the x-, y-, and Z-

dependencies of az and fz are separable. Assuming the

z-dependence to be exp(–jkz z), az and fz in each layer are

expressed as

fy)(z, y,z)

‘x ,
(4)#’~JE($) &)E(y) exp(–~kzz)

a~)(x, y,z)

.
-z

x(~3W(x) @J)”(y) exp(–j~zz)
1 (5)

1

where the superscripts i and j indicate the layer and section

and the superscripts E and M refer to TEX and TM. modes,

respectively. The separation parameters associated with the

functions X\i~), Yl(~) and exp( –jkZ z) are k~~), k$), and kZ,

respectively. The separation parameters and the wavenum-

ber of each layer k(i~) = w{- are related by the

dispersion equation.

The boundary conditions at each layer interface and at the

conducting walls at x = O,a are used to generate transcen-

dental equations for the z-directed wavenumbers k~) and

expressions for the unknown constants associated with the
(i~) [18].x-dependence Xl

The y-dependencies of the fields consist of infinite sums

ofplane waves. For convenience in the application of the

boundary conditions, the y-dependence of the fields in the

section which contains the current source is separated into two

parts, which are designated the primary and secondary fields.

The primary fields exist only in the section which contains

the source, satisfy the boundary conditions at the source, and

consist of plane waves leaving the source in the +y -direction.

Expressions for the prim~r field y-dependence &) (Y, Y’)

and mode amplitudes Cpl and C’&) are explicitly deter-

mined by the boundary conditions at the source (y = y’)
and are given in Appendix I. The secondary fields satisfy

the homogeneous wave equation in all regions and consist of

plane waves traveling in both directions with mode amplitudes

C’~) and D:). The secondary field mode amplitudes are

determined by enforcing the boundary conditions at each

section interface with mode matching (extending the work

in [1] by applying [19]–[22]) and combining the resulting

scattering matrix equations.

In order to relate the fields in all sections, reflection coeffi-

cient matrices are defined for waves at the interfaces between

sections. At the interface y = b(~– 1,, in the jth section, when

y < y’, and when section j does not contain the source (so that

the primary fields are zero), the reflection coefficient matrix

17<(~J relates the secondary field mode amplitudes by

c(~) = r<(~)D(~) (6)

where C[~) and D(j) are vectors which contain the mode

amplitudes and have the general form given in (25), Appendix

II. Equation (6) and the definition of the interface scattering

matrix in Appendix II are combined to give

r<(~+l) = Sfi) + s:)

. (-sfi) + (L(~) -’r<t~JL(JJ-’)-’) -lsfl) (7)

where

L(~)~l = diag{exp(+jk$)d(~ ))} (8)

and S~~ are the elements of the interface scattering matrix.

Similarly, at the interface y = b(~), in the jth section, when

y > y’, and when section j does not contain the source, the

reflection coefficient matrix 1’> (~) relates the secondary field

mode amplitudes by

~(~) = r>(~)@) (9)

so that

r>(~) = Sfi) + S~)(_Sfl)

+ (L(]+l)-lr>(~+l) L(j+l)-1)–1)–lS&). (10)

Since the ends of the waveguide at y = O and y = b are

perfectly conducting walls, 1’<(1) = 17>(J) = –1. Repeated

use of (7) and (10) gives 17<(~) and 17>(~) for the section

which contains the source.

When the reflection coefficient equations are applied at

the boundaries of thesection which contains the source, the

primary fields must be taken into account. As shown in

Appendix II, once the primary fields have been inclucled,

the secondary field mode amplitudes Cl (J) .‘~) and Dl m the

source section are known in terms of the primary field mode
S(3)amplitudes CPl .

The electric field Green’s function is expressed as

G~~Z(x,y; z’, y’)

= [u$)(z, y)]%(~) uy)(z’, y’) (11)

where R(i) is a matrix which depends on whether y’ < y or

y’ > y, the index j is determined by which section contains

y’, and Up) and UP) are vectors which contain the explicit

dependence of the Green’s function on (z, y) and ($’, :y’),

respectively. Expressions for R(j), Up), and U/) are given in

Appendix II. The matrix R(j) contains information about the

dielectric support structure relative to section j. When three-

dimensional structures are evaluated, R(j) may be determined

for each section of a given dielectric support structure, and



1254 IEEE TRANSACTIONS ON MICROWAVE THEORY NTECHNIQUES, VOL. 41, N0, 8>AUGUST 1993

efficient and swift analysis is possible for any configuration of

conductors which are placed parallel to the x- or y-axis on the

dielectric support structure. No such advantage is present in

the two-dimensional case since the propagation constant @ is

determined iteratively and Rf~J must be recalculated for each

value of ,EI.

C. Method of Moments Solution

The method of moments is applied by expressing the

currents on the conductorsin terms of basis functions U~ (z)

with unknown coefficients Im. Since all of the structures which

are characterized in the next section have conductors which

are narrow compared to guided wavelength, the current on

each conductor is assumed to have a negligible transverse

component and is modeled with a Maxwellian function [23].

The boundary conditions on the conducting strips are ap-

plied with Galerkin’s technique, and the resulting matrix

equation is

[V] = [Z][I] (12)

where [V] is the excitation vector, [I] is the vector of unknown

current coefficients, and [Z] is the A4 x ill impedance matrix

with elements given by

fxm!+wm!/2 fzm+wm/2
z!mm= 1Xm, —wm!/2 1 Xm —win/2

- GE.. (x, y = yin,; X’, y’

. ~m(X’) Vm (X) dx’ dx.

The left-hand side of (12) is zero since

= Ym)

(13)

E, vanishes on

the conducting strips, and the propagation constants for the

structure are determined from zeros of the determinant of

[Z] since (12) is a homogeneous system. In general, the

propagation constant T = -jkz may be complex, and is

expressed in terms of the phase constant /3 and the attenuation

constant a as CY= a + j@. Once the propagation constant is

known, the fields for a given mode can be calculated from the

integral equation.

D. Characteristic Impedance, Coupling Coejjicient,

and Time Domain Analysis

The characteristic impedance Z. of a given mode in a

structure is determined from a reciprocity-related characteristic

impedance definition [24], [25], which is chosen because
it converts the modal description of general, asymmetric

multiconductor lines into a form where the equivalent voltages

and currents are compatible with external device models.

In the case where coupled lines are evaluated, the coupling

is quantified with the coupling coefficient k., given by [26], as

the square root of the ratio of the coupled power to the incident

power. The expression for k. is given in Appendix III.

Pulse propagation in the time domain on the structures is

characterized by transforming the excitation to the frequency

domain, utilizing an equivalent circuit model [27] to evaluate

the response at each frequency point, and transforming back

to the time domain. The equivalent circuit model considers

the modes of a system of terminated transmission lines as

56.0 h/W = 1.382, e, = 12,9

54.0 -
— this work

g

~U 52.0 -

50.0 ... ................

0
48.01 I

0.01 0.10 1.00 lo.oil

Cl/w

Fig. 3. Comparison of characteristic impedance results from this work to

results from [6]. The center of the strip is aligned with b/2, w = 1.0 mm,
a a b n 27.6 mm, and frequency = 3 GHz.

d w +!+ .&+&#-++H—

—
A

a

v—

b

Fig. 4. Geometry of two coupled microstrips on dielectric ridges: w = 0.1
mm. h = 0.1 mm, d = 0.05 mm, a = 1.3 mm, b = 2.51 mm, and
G = 12.85.
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Fig. 5. Phase constant ~ versus frequency at various spacings s for the

structure described in Fig. 4.

equivalent decoupled lines of unit characteristic impedance.

The spatial variation of the equivalent voltages and currents for
a given mode is described by the propagation constant, which

is calculated from the IEMM analysis, and by two coefficients,

which are calculated from the boundary conditions at the

terminations. The equivalent quantities are related to the

physical quantities through coupling matrices which depend

upon the modal coefficients of the physical currents and the

characteristic impedance of each mode.

III. RESULTS

The software was developed on an HP/Apollo workstation,

and the calculationswere performed on HPIApollo, HP 9000,

and IBM RS-6000 computers. In all cases presented here, the
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propagation constant values were well converged using 100

TEZ and 100TMZ modes in each section. The characteristic

impedance calculations required 140 TEZ and 140 TM. modes

in each section. As with all hybrid techniques, the efficiency

of the IEMM method is highly dependent on the geometry

of the problem being solved. The CPU time required by

the integral equation portion of the code depends on the

conductor geometry, and the time required by the mode match-

ing depends on the dielectric geometry. Specifically, for the

propagation constant calculations, an HP 9000/720 workstation

needs 2 CPU min for each mode matching interface and

5 min to calculate the Green’s function matrix R@ and

solve the integral equation. Propagation constants are typically

determined in fewer than ten iterations. These CPU times

reflect the current state of the code, and do not reflect any

fundamental limit on the efficiency of the method. Techniques

are available which could greatly reduce the computation

times.

A. Verification

The software has been extensively verified. Results for

simple microstrip and coupled microstrip were compared with

the multitudinous data available in the literature; excellent

agreement was obtained. The propagation constant as a func-

tion of frequency for a microstrip near a chip edge was

calculated using the IEMM method, and was shown to agree

well with results obtained from both the method of lines and

experiment [17]. Results for the characteristic impedance for

a similar structure on two substrates of differing permittivities

and heights are compared to results from the literature [6] in

Fig. 3, and agreement to within 2% is obtained.

B. Coupled Microstrips on Dielectric Ridges

The geometry of two coupled microstrips on dielectric

ridges is given in Fig. 4; the structure is characterized in

Figs. 5–8. The first plot illustrates the behavior of the even-

and odd-mode phase constants for different spacings over the

frequency range 85–105 GHz. The next three plots show the

phase constants /3, characteristic impedances Z., and coupling

coefficient k. at 94 GHz as a function of spacing for strips on

ridges and coupled microstrip on a continuous substrate.

Typical of coupled lines, the even-mode phase constants

generally decrease andthe odd-mode phase constants generally

increase with increasing spacing (Figs. 5–6)-i.e., as the lines

become further apart, the even and odd modes decouple

and the phase constants tend toward the single-strip value.

However, in this case, for 100pm < s < 150pm, the odd-

mode phase constant decreases before it begins to increase.

At s = 100 #m, the ridges are contiguous and the strips are

together on a single ridge; the range 100 #m < s < 150 flm

is a transition region between the case of two strips on

a single ridge and the case of two strips on two ridges.

The transition region is better understood by placing an

electric wall halfway between the two strips; the odd mode

may now be characterized by considering either the left or

right half of the structure [28]. The capacitance between

one of the strips and the electric wall through the dielectric

‘---..... ..-. .....
3.20 - .............-

even...........................

3.10 -

300 -

....----....--””-”” even
2.90 - ........---”-””---”-

.....

2.80 -

2.70

1255

““”-”-”-”~E

100, 150. 200. 250, 300

Spacings (yin)

Fig. 6. Phase constant ~ versus spacing s at 94 GHz for microstrip on

dielectric ridges (Fig. 4) and microstrip on continuous substrate (Fig. 4, with

the two ridgesreplaced by a single substrate which extends over the entire

width of th~ stricture). - -

48.0 -

46.0 -

44.0 - odd

42.0 -

40.0 -

36.0
100. 150. 200. 250. 300.

Spacings (~m)

— ~-

‘-”-----”~

Fig. 7. Characteristic impedance Zc versus spacing s at 94 GHz for
microstrip on dielectric ridges (Fig. 4) and microstrip on continuous substrate
(Fig. 4, with the tworidges replaced by a single substrate which extends over
the entire width of the structure).

O&) -

0.0 100,0 200.0 300.0

Spacings (pm)

Fig. 8. Coupling coefficient kcversus spacing s at 94 GHz for microstrip
on dielectric ridges (Fig. 4), microstrip on narrower dielectric ridges (Fig. 4,
with d = O), and microstrip on continuous substrate (Fig. 4, with the two
ridgesreplaced by a single substrate which extends over the entire width of
the structure).

ridge and the air gap between the two ridges is sharply

decreased when the air gap increases from zero width, and this

decrease is reflected by the decrease of the odd-mode phase

constant in the transition region. As the air gap increases, this
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I JL+J+QL.I Ha

b

Fig. 9. Geometry of two microstrips with a groove etched between them:
w = ().1 mm, h n 0.1 mm,s D 0.075 mm, a = 1.3 mm, b = 2.51 mm,

and .s, = 12.85.

capacitance becomes less and less significant compared to the

other capacitances between the strip and ground, and the odd-

mode ,6-s curve more closely resembles that of conventional

coupled microstrip.

The data demonstrate that as the spacing between strips

increases, the strips on the ridges decouple faster than the

strips on the continuous substrate. The ~–s and ZC–S curves

for the coupled microstrip on ridges converge to the respective

values for a single strip on a ridge faster than the ~– s and

Z.–s curves for the strips on the continuous substrate converge

to the respective values for a single microstrip on a continuous

substrate. In addition, the coupling coefficient of the strips on

the ridges falls off more rapidly with spacing than does the

coupling coefficient of microstrip on a continuous substrate.

When increased packing density is desirable, structures of this

type may be used in place of conventional microstrip.

The coupling coefficient curves include data for the limiting

case of ridges with widths equal to the widths of the conduct-

ing strips. At s = 100pm, the strips on the wider ridges are

on one ridge, and the coupling is the same as for microstrip

on a continuous substrate. As s increases, the coupling of the

strips on the wider ridges tends toward that of the strips on
the narrower ridges. The transition between the case of strips

on a contiguous substrate and strips on individual ridges over

the range 100 m < s < 150 ,um is again manifest.

C. Coupled Microstrips with an Etched Groove

A structure which is closely related to the microstrip on

ridges is thecoupled microstrip with an etched groove ( Fig. 9).

The effects of groove depth on the propagation and coupling

characteristics of the structure at 94 GHz are shown in Figs.

10-12.
The plots of the even- and odd-mode phase constants versus

groove depth (Fig.10) show that the phase constants decrease

rapidly with increasing groove depth at shallow groove depths,

with the odd-mode phase constant decreasing more rapidly.

As the groove depth becomes comparable to the substrate

height, the decreases of the phase constants become slower and

more alike. The odd-mode characteristic impedance also shows

rapid change at shallow groove depths. Significant effects on

the propagation occur when even a very shallow groove is

added; the coupling coefficient versus groove depth plot in

Fig. 12 shows that marked decoupling occurs over the range

O~m < hl < 20pm.

1 1 1 1

3.20 -

3.00 -

2.80

2.60 -

odd

~go ~

0.0 20,0 40.0 60.0 80.0 100.0

Groove Depth hl (Vm)

Fig. 10. Phase constant @ versus groove depth hl at 94 GHz for coupled
microstrip with etched groove (Fig. 9).

I 1 1 I

55.0 -

g

No 50.0 -
E
$

z 45.0 -
g

!4 r)dd

8 40.0 -

35.0
0.0 20.0 40.0 60.0 80.0 100.0

Groove Depth hl (pm)

Fig. 11. Characteristic impedance Zc versus groove depth hl at 94 GHz for

coupled microstrip with etched groove (Fig. 9).

0.20 L 1 1 1 1

OJd ~
0.0 25.0 50.0 75.0 100.0

Grcove Depth hl (pm)

Fig. 12. Coupling coefficient kc versus groove depth hl at 94 GHz for
coupled microstrip with etched groove (Fig. 9).

Fig. 11 shows that the even- and odd-mode characteristic

impedances are most dissimilar at very shallow and very

deep groove depths, suggesting that the coupling coefficient

has a minimum value at intermediate groove depths. Fig. 12

substantiates that k. has such a minimum, and shows that the

minimum occurs when the groove depth hl is between 50 and

60 pm.

Pulse propagation on the structure when hl = O #m and

hl = 50 #m is illustrated in Figs. 13–15, respectively. In

each case, the line lengths were 2.54 cm, and the lines were
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O.co 100 2.(KI 300

Time (nsec)

-------- FarEnd
.0.10’ I

0.00 1.(!0 2.00 3.00
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Fig. 14. Propagation ofapulse onmupled microstrip with anetched groove

of depth hl = 50pm. The geometry is given in Fig. 9. Left—active line;

right—sense line.

excited at one end of one of the lines, i.e., the “near end”

of the “active line.” The pulse had a duration of 1.0 ns, rise

and fall times of 0.1 ns, an amplitude of 1.0 V, and a period

of 10.0 ns. Each end was terminated with 43.0 0, which is

the characteristic impedance of a single conducting strip on

the substrate shown in Fig. 9 with hl = O ~m. Independent

of groove depth, the pulse on the active line undergoes no

noticeable dispersion since no losses are included, since the

propagation constants are nearly constant at frequencies up to

the maximum significant frequency component necessary for

the construction of the pulse, and since the difference between

the even- and odd-mode phase velocities is small.

The effects of the groove are quantified by the response on
the “sense line” (i.e., the line without the source). Associated

with the rise and fall of the pulse on the active line, relatively

short, low-amplitude pulses are present at the near end of the

sense line. Examination of these pulses shows that the presence

of the groove lessens the crosstalk between the two lines at the

near end. The amplitude of the near-end sense-line pulses in

the ungrooved case is greater than the amplitude of the near-

end sense-line pulses in the grooved case by a factor which is

approximately equal to the ratio of the coupling coefficients

when hl = 0.0 ~m and hl = 50.0 pm. At the far end of the

sense line, the dispersion due to the difference in even- and

odd-mode phase velocities [29] causes the amplitude of the
pulses to be larger in the grooved case.

The data demonstrate that the addition of the groove de-

creases crosstalk over short line lengths. The line length

at which the groove ceases to improve the crosstalk may

be determined from Fig. 15, which shows the time domain

response at various points along the sense line. At line lengths

No Groove

o“lo~

0.05

-0.05

–v. .“

0.00 0.50 1.00 1.50 2.00

I — z. O,omenl

-------- z= 0.63SCUI

------ z= 1.27C.XII

------ Z= LS05WII

----- z.z.wkm

Time (nsec)

— z . O,o$ocm
-.....-. Z- 0.635cm

------ ,s 1.27@.m

..--.. z=l.sos.m

I
----- z=254LMII

i!
p

-0.10
000 0.50 1,00 1.50 2.00

Time (nsec)

Fig. 15. Propagation of a pulse on the sense line of coupled microstrip with

no etched groove (top) and with an etched groove of depth hl = 50pm
(bottom). The geometry is given inFig. 9.

a

\

Fig. 16. Geometry of modulator stmcture. a = b = 1.0 mm.

of O and 0.635 cm, the maximum amplitude of the pulse

in the grooved case is less than the maximum amplitude of

the pulse in the ungrooved case; the converse is true at line

lengths of 1.905 and 2.540 cm. At a line length of 1.2’70 cm,

the maximum amplitude of the grooved case is only sliglhtly

greater than in the ungrooved case. The line length at which

the groove begins to degrade performance is 1.25 cm.

D. Electrooptic Modulator Structures

The IEMM analysis technique may also be applied to elec-

trooptic modulatorstructures. An integrated modulator stmc-

ture (Fig. 16) typically consists of an intrinsic GaAs guicling

layer for the optical signal and p- and n–Alo.025Gao.g7/jAs

layers for top and bottom cladding. The modulator is fabricated

on a 250 ~m n ‘–GaAs substrate; for simplicity, the substrate
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Fig. 17. Propagation constant T = a + j/3 versus frequency for modulator

structure of Fig. 16 at groove width s = 8.0 pm and groove depths

h = O.Opm and h = 6.Oym.

has been assumed to be a perfect conductor in this case. The

optical signal is modulated by a microwave signal, which is

guided by the two conducting strips. The bandwidth depends

inversely on the difference between the optical and microwave

indexes of refraction [30]. The microwave index of refraction

(i.e., ,B/kO) is considerably larger than the optical index of

refraction (= 3.41 for intrinsic GaAs at A = 1.3 ~m [31]) due

to the losses in the cladding layers. A groove is etched between

the two electrodes in order to improve the bandwidth by

decreasing the microwave index of refraction and to minimize

the attenuation in the microwave signal.

The microwave phase and attenuation constants are plotted

over the frequency range 1-40 GHz for two different groove

depths in Fig. 17. As the frequency increases to 13 GHz,
the phase constants ~/k. decrease; at frequencies above 13

GHz, the phase constants are approximately constant at values

between 4.0 and 6.0. The attenuation constants increase with

frequency. The microwave frequency at which the difference

between microwave and optical indexes of refraction is min-

imized, and at which microwave attenuation is minimized, is

therefore approximately 13.0 GHz.

The behavior of the propagation constants as the groove

width and height vary at 18 GHz is presented in Figs. 18–19.

As the groove width s increases, the even and odd modes

decouple as the phase constants converge; the attenuation is

only slightly affected. As the groove depth h increases, the

5“50L
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mid
. .

. . ...-.-.-.-”-”””

4.50 - --.-.- ..................----”-””-”-”-”””-””

..” -
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I50”0: L:
a 45.0
G
c
.8
m .........................

40.0 - .....- -.-...,
;

.....,.. %.../.. .....cdd

%
......

35.0 I 1 1 , 1 I
0.0 5.0 10.0 15.0 20.0 25.0

Groove Widths @m)

Fig. 18. Propagation constant y n a + j/3 versus groove width s for

modulatorstrncture of Fig. 16 at frequency = 18 GHz and groove depth
h = 6.O&m.

odd-mode attenuation decreases until the groove begins to pen-

etrate the lossless layer, at which point the attenuation becomes

approximately constant. This characteristic is consistent with

the attenuation constant data over frequency, which show that

the odd-mode attenuation constant when no groove is present

(h= 0.0 pm) is considerably higher than the other attenuation

constants. The odd mode evidently has a large fraction of its

power contained in the area between the conductors in the

lossy cladding layer.

IV. CONCLUSION

An integral equation–mode matching method useful in the

study of microstrip-ridge strutures has been presented, and
the method was applied to the characterization of several

nonplanar two-dimensional structures, namely, coupled mi-

crostrip on dielectric ridges, coupled microstrip with an etched

groove, and an integrated electrooptic modulator. The IEMM

technique is also applicable to structures with noncoplanar

conductors, and like most other integral equation techniques,

the IEMM technique is easily extended to the analysis of

three-dimensional structures. Future studies could consider

techniques to improve the efficiency of the method and mod-

ifications to the method which account for conductor losses,

complex coplanar waveguide structures, and anisotropic ma-

terials.
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APPENDIX I

PRIMARY FIELD MODE AMPLITUDES

The y-dependencies of the primary fields are

J’WE(Y>Y’)

= 41C#)E exp (+jk$)E(y – y’))

@$) M(Y>Y’)

1

y s y’.

= C~~)M exp (+~lc~)M(y – y’))

(14)

The currents on the conducting strips are assumed to have

only longitudinal (i.e., 2) components. Enforcing the boundary

conditions at the source (y = y’) gives expressions for the

primary field mode amplitudes:

jtixyqz’)— (15)
– 2.(@((k(@)2 – (k$/)~)2)1~(1)

~(+f~)E(x))2 dx 1[18)

Jpf(t’) = a 1

0 Jij)p(wv(i,j+l)

~(Xt, ‘i~)M(z))2dx. (19)

APPENDIX II

EXPLICIT EXPRESSION FOR THE GREEN’S FUNCTION

Before presenting the explicit expression for the Green’s

function, they-dependencies of the secondary fields are given,

the interface scattering matrix is defined, and the secondary

field mode amplitudes in the section which contains the source

are determined.

The y-dependencies of the secondary fields are shown in

(20) and (21) at the bottom of the next page.

The scattering matrices are defined by the equations

[

L(~)-l@)
= [s(~)l@j+l) + A(j+l)(@ _ y@~+l) 1

6(3) < y’ (22)

[

L(~+l)@+l)

D(j)
1

[

L(i+l)–l~(~+l)

= [f$(~)l c(j)+ A(j)(yl _ btr))c;(~) “1
/+.?)> y’ (23)

where C(j), D(j), C(~+lJ, D(~+l), C~(~+l), and C~(~) are

vectors which contain the mode amplitudes, L(~)*l is given

in (8) and

A(j)(d) = diag{exp (jk$)d)}. (24)

The general form of the mode amplitude vectors is

c(~) = [@M (&f . . . @M . . . @E

.@E... OEO]T.. ]T. (25)

The primary fields are included in the boundar conditions
7via the vectors CP (Appendix I); recall that C~ = O unless

section j contains the source.

If section j is now assumed to contain the source, ~$j~

section j is divided into two regions at y = y’, and Cl

and D1 :>(~)<‘i) are the mode amplitudes for y < Y) and Cl
>(j)

and Dl are the mode amplitudes for y > y’. The reflec-

tion coefficient matrix definitions ((6) and (9)) with nonzero
primary fields are

C<G)

= @)(@~) + A(~)@@l) _ @;@) (26)

D>(i)

= r>(~)(@~) + A(~)(y’ – @))@~)) (27)
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and C> [~) and D<(~) are

c>(j) = (~ – L(~)-1TK(~)L(~)-lr>(2))-1

. L(i) -lr<G)

, (~(3)-lrX~)A(~)(y/ - @))@~)

+ A(~)(&l) _ @j(~))

= @’(~)A(~)(y’ _ @@~(~) +&)—

. A(~)(&l) – ~’)@~) (28)

~<(j) = (~ _ L(~)-1r>(~)L(~)-lr<(~))-1

. L(+lr>(~)

. (~(~)-lr<(J)A(~)(~(3-1) - ~’)@J)

+ A(~)(y’ – @)@))

= R;(~)A(~)(&) _ ~@~)—

z(~)A(J’)(V~ – @)@~) .+ Rz (29)

The secondary field mode amplitudes are determined from (28)

and (27) if the Green’s function is required fm y < y’, or

from (29) and (26) if the Green’s function is required for

y > y’. Typically, the conductors are at section interfaces, so
that either y’ = b(~) or y’ = b(~– 1). Inspection of the above

equations indicates that numerical problems are minimized

when the Green’s functicm for y < y’ is used in the case

when y’ = b(f – 1, and the Green’s function for y > y’ is used

in the case when y’ = b(~).

As shown in (11), the Green’s function is determined by the

vectors U:) (z, y) and U$) (z’, y’) and by the matrix R(j).

The vector Up) (z, y) is

where the lth element of the vector ~(~) (z) is

{

kz djf+)hf

– ~e(v)w(~d dx
up(z) = if 1 dermtes a TM. mode (31)

~~$)E xjij)E(z)
~(,J)

if 1 denotes a TEZ mode

and d<(~)(y) = b(~–l) – y and d’(~)(y) = y – b(~). The

vector U$) (c’, y’) is

T-&(z’,y’)

1
A(~)(&(~) (y)) (@) (z’)

A(J) [d~(~) (Y)) @ (z’)

= A(j) (&(~)(g)) @~)(%’)

I

Y ~ Y’. (32)

A(~)(d~(~) (y)) C~) (z’)

Finally, the matrix $@ is shown in (33) at the bottom of the

page.

I
C~)E exp (–jk$)E(y – b(~-1)))

+ D~)E 1
y<y’

q(W(y) =
(

exp jk(~)E(y – b(J-ll))

–Cp)E exp (–jkJ)&(y – b(~)))

+ D$)E exp (jk$)E(y - b(~))) }
y>y’

I

C~)~ exp (–jk$)N1(Y – b@l)))
+ ~p)~

exp j7i#qy - b(~-’))) }
y<y’

~(j)~f(y) =
[–Cy)M exp (–jkgt (y – b(~)))

+ &)M
exp (jkfpqy - @)) }

y > y’.

(20)

(21)

(33)
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APPENDIX III

COUPLING COEFFICIENT

The cmtpling cc)efficient kC is given by

kc = +(re – r.)

where
——

r. =
j(~.. - ZCe’) sin ,b.1

——
2 cos /3.1 +j(ZC. + ZCel) sin ,B.1

——

r. =
j(ZcO - ZCO’) sin ,6.1

2 cos ,f301+ j(~CO + 2,.01) sin (3.1

Z.e= g
o

z.. = +
o

(34)

(35)

(36)

(37)

(38)

(39)

where Z.. and Z.. are the characteristic impedances; /3. and

/30 are the phase constants for the even and odd modes,

respectively; and the length 1of the coupler is taken to be one-

quarter of the average of the even- and odd-mode wavelengths.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

REFERENCES

A. G. Engel, Jr. and P. B. Katehi, “Low-loss monolithic transmission
lines for submillimeter and terahertz frequency applications,” IEEE

Trans. Microwave l%zeo~ Tech., vol. 39, pp. 1847–1854, Nov. 1991.
B. Young and T. Itoh, “Analysis and design of microslab waveguide,”
IEEE Trans. Microwave Theory Tech., vol. M’IT-35, pp. 850–857, Sept.

1987.
— “Analysis of coupled Microslab TM lines,>) IEEE Trans. Microwave

T#-zeo~ Tech.j vol. 36, pp. 616619, Mar. 1988.
C. E. Smith and R. Chang, “Microstrip transmission line with finite-
width dielectric,” IEEE Trans. Microwave Theory Tech., vol. MTT-28,
pp. 9&94, Feb. 1980.
E. Yamashita, K. R. L1, and Y. Suzuki, “Characterization method and

simple design formulas of MCS lines proposed for MMIC’S,” IEEE
Trans. Microwave Theory Tech., vol. MTT-35, pp. 1355–1362, Dec.

1987.
E. Yamashita, H. Ohashi, and K. Atsuki, “Characterization of microstrip
lines near a substrate edge and design formulas of edge-compensated
microstrip lines; IEEE Trans. Microwave Theory Tech., vol. 37, pp.
890-896, May 1989.
W. Heinrich and H. L. Hartnagel, “Wave propagation on MESFET

electrodes and its influence on transistor gain,” IEEE Trans. Microwave
Theory Tech.j vol. MIT-35, pp. 1–8, Jan. 1987.
C. C. Tzuang and J.-D. Tseng, “A full-wave mixed potential mode-

matching method for the analysis of planar or quasi-planar transmission
lines: IEEE Trans. Microwave Theory Tech., vol. 39, pp. 1701–1711,
Oct. 1991.
M. Thorbum, A. Agoston, and V. K. Tripathi, “Computation of

frequency-dependent propagation characteristics of microstriplike prop-

agation structures with discontinuous layers,” IEEE Trans. Microwave
Theory Tech., vol. 38, pp. 148-153, Feb. 1990.
K. Wu and R. Vahldieck, “Comprehensive MoL analysis of a class of

semiconductor-based transmission lines suitable for microwave and op-
toelectronic application,” Int. J. Numer. Modelling: Electron. Networks,

Devices and Fields, vol. 4, pp. 45–62, 1991.
[11] B. M. A. Rahman, F. A. Fernandez, and J. B. Davies, “Review of finite

element methods for microwave and optical waveguides,” Proc. IEEE,
VOL 79, pp. 1442–1448, C)ct. 1991.

[12] K. Bierwirth, N. Schulz, and F. Amdt, “Finite-difference analysis of
rectangular dielectric waveguide structures,” IEEE Trans. Microwave
Theoiy Tech., vol. MIT-34, pp. 11041114, Nov. 1986.

[13] D. H. Choi and W. J. R. Hoefer, “The finite-difference-time-domain

method and its application to eigenvalue problems,” IEEE Trans. Mi-
crowave Theory Tech., vol. MTT-34, pp. 1464-1470, Dec. 1986.

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[2?]

[29]

[30]

[31]

W. J. R. Hoefer, “The transmission-line matrix method—Theory and
applications,” IEEE Trans. Microwave Theory Tech., vol. MTT-33, pp.

882–893, Oct. 1985.
W. Schroeder and I. Wolff, “A new hybrid mode boundary integral
method for analysis of MMIC waveguides with complicated crossec-

tion,” in 1989 IEEE MTT-S Int. Microwave Symp. Dig., vol. 2, 1989,

pp. 711-714.
A. G. Engel, Jr. and L. P. B. Katehi, “On the analysis of a transition

to a layered ridged dielectric waveguide,” in 1992 IEEE MTT-S Znt.

Microwave Symp. Dig., vol. 2, 1992, pp. 983-986.
—, “Analysis of microstrip structures on and near dielectric ridges

using an integral equation-mode matching technique,” in 1991I,EEE

MTT-S Int. Microwave Symp. Dig., vol. 1, 1991, pp. 135-138.
F. E. Gardiol, “Higher-order modes in dielectrically loaded rectangular
wavegrrides,” IEEE Trans. Microwave Theorv Tech., vol. MTT- 16, PP.

919–~24, NOV. 1968.
. .

R. Safavi-Naini and R. H. MacPhie, “On solving wavemride iutrction-u .
scattering problems by the conservation of complex power technique,”
IEEE Tr@rs. Microwave Theory Tech., vol. MTT-29, pp. 337–343, Apr.
1981.
—, “Scattering at rectangular-to-rectangular waveguide junctic,ns,”
IEEE Trans. Microwave Theoq Tech., vol. MTT-30, pp. 2060-2063,
NOV. 1982.
R. R. Mansour and R. H. MacPhie, “Scattering at an N -furcated

parallel-plate waveguide-junction,” IEEE Trans. Microwave Theory
Tech., vol. MTT-33, pp. 337–343, Sept. 1985.
—, “An improved transmission matrix formulation of cascaded dis-

continuities and its application to E-plane circuits,” IEEE Trans. Mi-

crowave Theoiy Tech., vol. M’IT-34, pp. 1490--1498, Dec. 1986.
J. Meixner, “The behavior of electromagnetic fields at edges,” LEEE

Trans. Antennas Propagat., vol. AP-20, pp. 442=446, July 1972.
L. Wiemer and R. H. Jansen, “Reciprocity related definition of strip
characteristic impedance for multiconductor hybrid-mo~~ transmission
lines,” Microwuve Opt. Tech. Lett., vol. 1, pp. 22-25, Mar. 1988.
L. Carin and K. J. Webb, “Characteristic impedance’ of multilevel,

multiconductor hybrid mode microstrip,” IEEE Trans. Magn., voi 25,
pp. 2947–2949> July 1988.
P. A. Rizzi, Microwave Engineering. Englewood Cliffs, NJ: Prentice-

Hall, 1988, p. 383.
L. Carin and K. J. Webb, “An equivalent circuit model for termi-

nated hybrid-mode multiconductor transmission lines,” IEEE Trans.
Microwave Theory Tech., vol. 37, pp. 1784-1793, Nov. 1989.
K. C. Gupta, R. Garg, and I. J. Bahl, Microstrip Lines and Slotltines.
Dedham, Ivfk Artech House, 1979, ch. 8.
J. P. Gilb and C. A. Balanis, “Pulse distortion on multilayer coupled
microstrip lines,” IEEE Trans. Microwave Theory Tech., vol. 37, pp.

1620–16~8, Oct. 1989.
R. C. Alferness, S. K. Korotkv, and A. J. Marcatili, “Velocity-matching

techniques for integrated optic_ traveling wave switcfr/modula~ors,” lEE&
J. Quantum Electron., vol. QE-20, pp. 301–309, Mar. 1984.
S. Y. Wang and S. H. Lin, “High speed III–V electrooptic waveguide

modulators at A = 1.3 pm,” J. Lightwave Technol., vol. 6, pp. 758–771,

June 1988.

Andrew G. Engel, Jr. was born in Rochester, MN,

on February 9, 1961. He received the B.S. degrse in
physics from Stanford University, Stanford, CA, in
1982, and the M.S. and Ph.D. degrees in electrical

engineering from the University of Michigan, Ann
Arbor, in 1988 and 1993, respectively.

From 1984 to 1987 he worked at Avantek, Inc.,
Santa Clara, CA, as a Microwave Components Re-
liability Engineer. His Ph.D. dissertation at the Uni-
versity of Michigan was on the frequency and time
domain characterization of microwave, millimeter-

wave, and terahertz hybrid and monolithic waveguiding structures, He is
currently with Motorola, Phoenix, AZ.



1262 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 41, NO. 8, AUGUST 1993

Linda P. B. Katehi (S’81–M’84-SM ’89) received pthr 1984 Dr Katehi received teh W. P. King Award and in 1985 the S.

the B. S.E.E. degree from the National Technical A. Schelkunoff Award from the Antennas and Propagation Society. In 1987

University of Athens, Greece, in 1977, and she received an NSF Presidential Young Investigator Award and an URSI

theM.S.E.E. and Ph.D. degrees from the University Young Scientist Fellowship, She is an Associate Editor of the IEEE Antennas

of California, Los Angeles, in 1981 and 1984, and Propagation Society and Radio Science. She is also a member of Sigma

respectively. Xi,URSI Commission D, and an elected member of the IEEE Antennas and

In September 1984 she joined the faculty of the Propagation Society Administrative Committee,

EECS Department of the University of Michigan,

Ann Arbor. Since then, she bas been involved in the
modeIing and computer-aided design of millimeter
and near-millimeter wave monolithic circuits and

antennas.


